a^2+25=64

Simple and best practice solution for a^2+25=64 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for a^2+25=64 equation:



a^2+25=64
We move all terms to the left:
a^2+25-(64)=0
We add all the numbers together, and all the variables
a^2-39=0
a = 1; b = 0; c = -39;
Δ = b2-4ac
Δ = 02-4·1·(-39)
Δ = 156
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{156}=\sqrt{4*39}=\sqrt{4}*\sqrt{39}=2\sqrt{39}$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{39}}{2*1}=\frac{0-2\sqrt{39}}{2} =-\frac{2\sqrt{39}}{2} =-\sqrt{39} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{39}}{2*1}=\frac{0+2\sqrt{39}}{2} =\frac{2\sqrt{39}}{2} =\sqrt{39} $

See similar equations:

| 22+y+16=180 | | -7x+12=-13 | | 6x+3=3(3x+7) | | -82=m-15 | | 5y-12)+(-5y-1)=0 | | Y=X²-8x-10 | | 109+z=-27 | | 2x-17+x-43+x-39=180 | | x^2-52x-32=0 | | 3(t+2)=2(2+3t)+4 | | -130=-67-b | | -x-112=28 | | 67-n=-91 | | 7x-23x-6x=180 | | s−–46=60 | | n-5.6=-14.9 | | 3n-n=11 | | 12x=2.50x+38 | | 0.5x=5*1.5 | | 4(3^2x+1)+17(3x)-7=0 | | 16.6x=-43.16 | | 25=40x5 | | n/18.6=10.5 | | -3.7=-2.7+b/0.2 | | (x+7)+35+(180-3x)=180° | | -2.6-3.4a=0.12 | | 9.9=3.1-3.4x | | 2.5+c/0.4=11 | | X-7=4x-50 | | ⅓÷86400=x | | (1)/(2)((2)/(3)e-3+2e)=-4((1)/(8)e+1-e) | | 3(x+27)=90 |

Equations solver categories